Report Abstract

SUMMARY OF THE SAN JUAN STRUCTURAL BASIN REGIONAL AQUIFER-SYSTEM ANALYSIS, NEW MEXICO, COLORADO, ARIZONA, AND UTAH

By Gary W. Levings, John Michael Kernodle, and Condé R. Thorn

Ground-water resources are the only source of water in most of the San Juan structural basin and are mainly used for municipal, industrial, domestic, and stock purposes. Industrial use increased dramatically during the late 1970's and early 1980's because of increased exploration and development of uranium and coal resources.

The San Juan structural basin is a northwest-trending, asymmetric structural depression at the eastern edge of the Colorado Plateau. The basin contains as much as 14,000 feet of sedimentary rocks overlying a Precambrian basement complex. The sedimentary rocks dip basinward from the basin margins toward the troughlike structural center, or deepest part of the basin. Rocks of Triassic age were selected as the lower boundary for the study. The basin is well defined by structural boundaries in many places with structural relief of as much as 20,000 feet reported. Faulting is prevalent in parts of the basin with displacement of several thousand feet along major faults.

The regional aquifers in the basin generally are coincident with the geologic units that have been mapped. Data on the hydrologic properties of the regional aquifers are minimal. Most data were collected on those aquifers associated with uranium and coal resource production. These data are summarized in table format in the report. The regional flow system throughout most of the basin has been affected by the production of oil or gas and subsequent disposal of produced brine. To date more than 26,000 oil- or gas- test holes have been drilled in the basin, the majority penetrating no deeper than the bottom of the Cretaceous rocks.

The general water chemistry of the regional aquifers is based on available data. The depositional environments are the major factor controlling the quality of water in the units. The dominant ions are generally sodium, bicarbonate, and sulfate. A detailed geochemical study of three sandstone aquifers--Morrison, Dakota, and Gallup--was undertaken in the northwestern part of the study area. Results of this study indicate that water chemistry changed in individual wells over short periods of time, not expected in a regional flow system. The chemistry of the water is affected by mixing of recharge, ion filtrate, or very dilute ancient water, and by leakage of saline water.

The entire system of ground-water flow and its controlling factors has been defined as the conceptual model. A steady-state, three-dimensional ground-water flow model was constructed to simulate modern predevelopment flow in the post-Jurassic rocks of the regional flow system. In the ground-water flow model, 14 geologic units or combinations of geologic units were considered to be regional aquifers, and 5 geologic units or combinations of geologic units were considered to be regional confining units. The model simulated flow in 12 layers (hydrostratigraphic units) and used harmonic-mean vertical leakance to indirectly simulate aquifer connection across 3 other hydrostratigraphic confining units in addition to coupling the 12 units.

Abstract from Water-Resources Investigations Report 95-4188



TOP
NM WATER HOME | PUBLICATION INDEX

Accessibility FOIA Privacy Policies and Notices

Take Pride in America home page. FirstGov button U.S. Department of the Interior | U.S. Geological Survey
URL: http://nm.water.usgs.gov/publications/abstracts/wrir95-4188.html
Page Contact Information: webmaster@nm.water.usgs.gov
Page Last Modified: Wednesday, 26-Dec-2012 13:38:20 EST (rwb)